

Vast Numbers of Connections Expected

Increasing attached

Increasing throughput

What type of Things will be connected?

Anything with current going through it

And a lot of things that don't, today

Literally, almost anything and anyone!

What's needed: WAN 'Internet of Things' air interface

- 1. System scaleable to billions of devices
- 2. Very long battery lives: cost of truck rolls >> modules
- 3. Ultra-cheap user equipment (UE)
- 4. Longer reach than today's cellular
- 5. Strong and uniform security
- 6. Works globally in harmonized spectrum
- 7. Easy access through cloud-based APIs

Two approaches to achieving this

1. MNOs deploy in cellular spectrum

- > Licensed use, no other interferers
- Use existing RAN infrastructure
- Higher permitted power
- > Heavy standardization process

2. Fixed line or private operators deploy in license-exempt spectrum

- Shared use of spectrum
- Requires new basestations/backhaul
- > Lower permitted power
- > Duty cycle restrictions
- > Quicker standardization process

Much of the technology can be common and both approaches have a place in the market

Milton Keynes: City-wide IoT

Objective is to spur economic growth

License-exempt wide area network for IoT

Rory Cellan-Jones for BBC World at One

License-exempt City-Wide Low Power WAN network

Module Costs approaching \$3 (1Mu 2016)

еВОМ	2016 Estimates
Boudica single chip RF/BB/security	\$0.90
PA/switch module	\$0.40
26MHz XO	\$0.18
32kHz XO	\$0.11
RF filter	\$0.14
Other discretes	\$0.20
Total eBOM	\$1.93
Mechanical, Assembly & Test	
PCB (4 layer FR4, 175mm2)	\$0.13
Shield	\$0.04
Assembly	\$0.40
Test	\$0.10
Yield loss (2%)	\$0.05
Packaging/labelling	\$0.10
Total ex-works cost	\$2.75
OEM value-added	
Freight (shipped)	\$0.14
Allowance for swap/RMA (2%)	\$0.06
OEM margin (10%)	\$0.33
Total expense to MNO or channel	\$3.28

Modules approaching 20 years service lives on 50¢ batteries

	Battery life for 2500 mAH x 3.7V capacity Report = 100 bytes uplink, 20 bytes downlink		
Coverage enhancement vs. GSM	6 reports/hour	1 report/hour	1 report/day
0 dB	6.7 years	> 20 years	> 20 years
0 – 10 dB	3.0 years	14.7 years	> 20 years
10 – 20 dB	0.4 years	2.3 years	> 20 years

eg parking sensor

eg gas or electric meter eg fire alarm or water meter

Dev kit for applications

Example sensor

Web-based configuration tool

Initial Applications

Pest control management

Future applications

Traffic management
Parking
Smart Grid
Metering
Buildings HVAC
Buildings security
Asset tracking
Healthcare
Assisted Living
Wearables
Consumer goods

MK:Smart @MKSmartProject · Jun 13

Imagine how smart transport design could transform Milton Keynes... ow.ly/xVtCz #kmiou #mksmart

♣ Reply ★ Retweet ★ Favorite

Summary

- We are at the dawn of a new era
 - > WAN technologies are emerging fast for IoT connectivity
 - > They are needed and will open up the IoT market for us all
- UK is at the epicenter of this
- Cellular licensed technologies are one way of doing this
- Milton Keynes is BT's WAN test bed in the UK for license-exempt systems
- Join with us in establishing the necessary standards and eco-systems to ensure UK leadership

