cit

Conductive Materials – Market Uses and Experiences

Steve Thomas

Conductive Inkjet Technology Ltd. HVM Graphene 2013 Conference 5 November 2013 Cambridge

www.hvm-uk.com

Overview

- Outline of some applications in printed electronics and where graphene sits
- Very small section of potential applications of graphene
 - Those where CIT is active
 - CIT is not currently working with graphene
- Mainly using data based on available materials not hero results

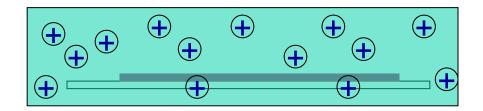
About CIT

- Part of Carclo plc, £250m business on London stock exchange
- Carclo is a manufacturer
 - Medical device and disposables
 - LED lighting for super cars
 - Specialist Aerospace parts
- CIT is subsidiary based in Cambridge, England
 - Focussed on catalyst and metallisation processes

CIT Business

cit

- Licensor of Touch screen sensor circuits
 - In partnership with Atmel Corporation
- Manufacturer of inkjet based flex circuits
 - Wide range of applications including sensors & antennas
- Developer of innovative solutions for wide range of applications across Printed Electronics
 - Developing full assembly processes for low-cost electronics
- R&D Partnered with several companies across the Organic semi-conductor sector
 - Focus on lighting and Photovoltaics



CIT Process

Digitally Print Catalytic Ink

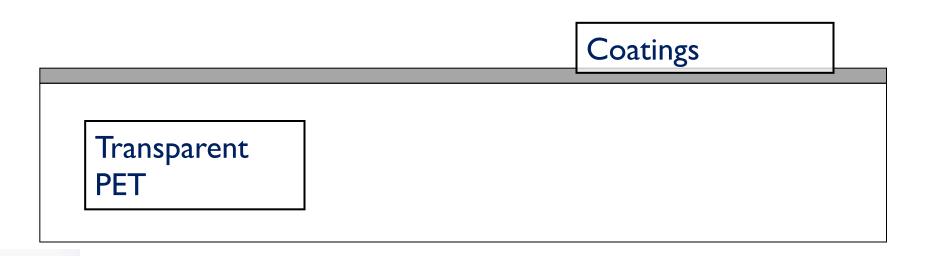
Immerse in solution of Metal Ions

Metal film is grown by Autocatalytic deposition

Typical Applications

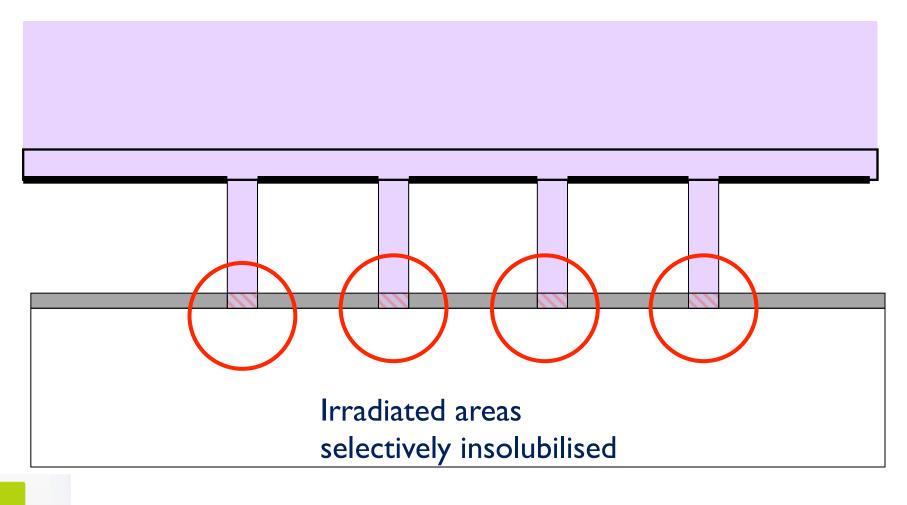
- UHF RFID antennas
- Suited to many other antenna applications
- Low current Sensors and Transducers
 - Cost effective for disposable applications
 - Flexible for easy implementation
 - Solderable allowing surface mount components to be attached on standard equipment
- LED Circuits and Arrays
 - Thin copper on PET ideal for Surface mounted LEDs
 - Limited power requirements

cit


cit

Transparent Conductor Solutions

- Metal Mesh as alternative to ITO
 - Currently largest CIT application
 - Touch sensors for mobile devices
 - Partnership with Atmel Semiconductor
- Front electrode materials for OLED and OPV devices
 - In combination with field filler


cit CIT Photo-lithographic Process

Photomask

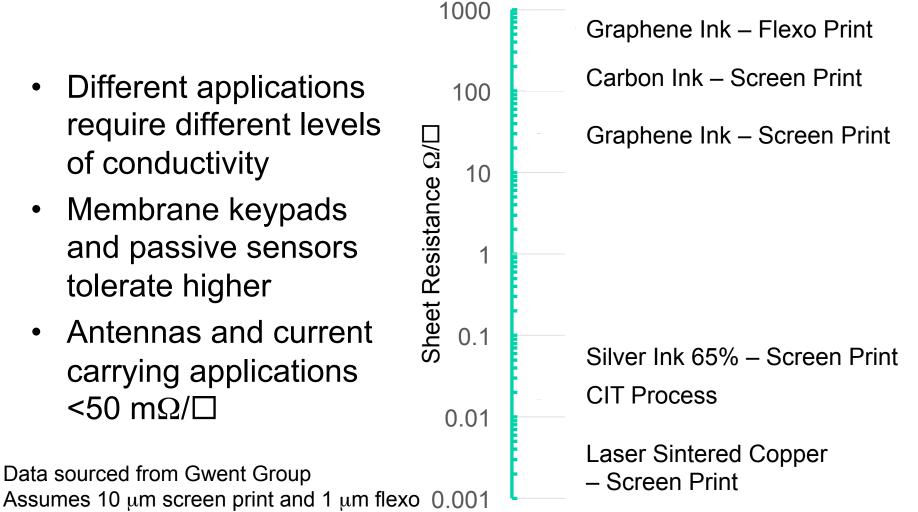
UV exposure

cit Development and Metallisation

- Wet Development dissolves unexposed coatings
- Wet metallisation step builds copper on patterned coating

INNOVATIVEADDITIVECIRCIIITTECHNOLOGY

Applications



- Consider two separate areas
 - Those traditionally served by conductive Inks
 - Those requiring transparent conductors

Conductive Inks

Requirements For Transparent **Cit** Conductors

Competition

- ITO
 - Typical: 270 Ω/♦ ~90% T
 - Available 100 Ω/♦, 10 Ω/♦ and less
- Metal Mesh Technology
 - − CIT, Cambrios ~ 10 Ω/♦ at 2-4% blocking
- Larger area devices pushing for lower sheet resistance and higher transmission

Graphene

- Theoretical Undoped
 - 97.7% T ~ 6k Ω/♦
- Typical doping 3.2 x 10¹² cm⁻²
 90% T ~ 20 Ω/♦
- CVD Films approach this
 - − GRAPHENEA >97% 170 Ω /♦
- Large area coating techniques not so promising numbers
 - Typically > k $\Omega/$ < 90% T

Typical data from:

Graphene photonics and optoelectronics F. Bonaccorso, Z. Sun, T. Hasan & A. C. Ferrari Nature Photonics 4, 611 - 622 (2010) Published online: 31/8/2010

Cost Targets and Other Considerations

Conductive Inks

- Need methods to make connections
 and assemble components
- Patterning techniques and processing speeds need to be considered
- Generally <\$2 /sqft printed circuit including substrate (Volume product)
- Lower conductivity applications tend to be lower cost (e.g. where carbon inks would be used instead of silver)

Transparent Conductors

- For most applications TCF will require patterning
- Devices usually require connection to outside world via higher conductivity medium
 - Silver printed bus lines on ITO film
 - Ideally <1 Ω/\Box
 - Bus lines built in for CIT process
- Applications demanding large area devices
 - >16" diagonal already sought
 - Higher conductivity enables larger area devices
- Typical cost ~\$0.5-\$1 per diagonal inch for finished component

cit

Thank You!

sthomas@conductiveinkjet.com

