Layered materials: from tiny things to advanced applications

Prof Jonathan Coleman School of Physics & CRANN, Trinity College Dublin

Liquid exfoliation of graphene

Small but *no defects, no oxides*

Use exfoliated graphene to reinforce composites

Applications: Composite strain sensors

Dynamic strain sensing

High rate sensing

Bio-mechanical motion sensing

Simple, cheap and very effective

Exfoliation of inorganic layered compounds

There are ~500 layered materials with all different properties

GaS, GaSe etc

Metals Semiconductors Insulators Electro-chemically active Luminescent Mechanically strong Photo-sensitive Superconductors Charge density waves Etc etc

Liquid phase exfoliation?

Can we extend to layered compounds?

Science, 331, 568 & Adv Mat 23, 3944

Also works for WS_2 , $TaSe_2$, $MoTe_2$, $MoSe_2$, NiTe₂, NbSe₂, TiS₂, TaS₂, MnO₂, RuO₂, TiO₂, Bi₂Te₃, Bi₂Se₃, Sb₂Te₃, Sb₂Se₃, MoO₃, GaS...

Prepare films...

From 10s of nm thick to freestanding

.....and composites

Many possibilities e.g. 2D:1D WS₂:SWNT

Applications: MoO₃ Supercapacitors

2 electrode cell $1M \text{ LiClO}_4$ in propylene carbonate

100-fold increase with 5% SWNT Up to 500 F/g at low rates

J Mater Chem C.

Production process scaled up for graphene and other 2Ds

- 1200

Thomas Swan

Performance Chemicals / Custom Manufacture / Advanced Materials

Advanced Materials – Graphene

Elicarb[®] Graphene Products

- Solvent exfoliation as a route to non-oxidised, conductive, Graphene Nanoplatelets.
- Developed in association with Prof. J. Coleman at CRANN,
 - Trinity College Dublin.
- Potential applications include:
 - Transparent conductive materials
 - Flexible and printed electronics
 - Super-capacitors and batteries
 - Thermal management materials
 - Mechanical reinforcement
- CRANN process is currently being transferred to Thomas Swan, Consett, UK.

CRANN-Thomas Swan Graphene

- Testing at Thomas Swan confirms that the solvent exfoliated graphene is substantially non-oxidised with good conductivity.
- Exfoliation pilot scale is now established at Thomas Swan and commissioning is in progress.
- Design of a full scale exfoliation plant is underway.
- Elicarb[®] Graphene will be available at gram scale for customer evaluations early in 2014.
- Thomas Swan welcomes customer enquiries for application development opportunities.

Thomas Swan....proven ability to scale carbon nanomaterials

Elicarb SW Low Residue 500kg production plant – recently commissioned.

For enquiries contact:

agoodwin@thomas-swan.co.uk

Thanks to: Group Dr Shane Bergin Dr Sukanta De Dr Fiona Blighe Dr Umar Khan **Yenny Hernandez** G Cuinningham Paul King Peter May Mustafa Lotya Ronan Smith Arlene O'Neill

Prof J Boland Prof Duesberg Prof V Nicolosi

Wollongong Various.....

European Research Council

Fondúireacht Eolaíochta Éireann Science Foundation Ireland