Energy Policy & Energy Markets What's the future for CCGTs?

Ben Willis RWE Generation UK

POWERING. RELIABLE. FUTURE.

8th Smart Grids Cleanpower 2017 Conference 19-20 June 2017, Cambridge, UK <u>www.cir-strategy.com/events</u>

...join the follow up 9th SGCP18 26-27 June Cambridge, UK

Natural tension in energy markets between policy makers and investors

Aims of policy makers

To **secure** energy supplies & fulfil the **decarbonisation** agenda at the most **affordable** cost

VS

Aims of investors

To secure a return on investment by building the *right* plant in the *appropriate* location at the *right* time

> Mentality of policy makers is critical in defining this relationship

Economic Efficiency

Be clear on macro objectives Fewer highly-focused interventions Simple generic instruments

"Set framework & let market decide"

Central Planning

Technology-specific interventions

VS Complex interactions with marketsComplex interactions between policies

"Picking winners then unpicking problems"

Mindset of policy makers changed from design through to implementation

Electricity	Market Reform ¹

Contract for Difference	Capacity Mechanism	Carbon Price Support
<i>"Support investment in low carbon technologies"</i>	"Support security of supply"	<i>"a tax to underpin the carbon price in the EU ETS"</i> <i>"provide long-term certainty"</i>

- > Original intentions were sound, however policy design didn't recognise wider market & regulatory interactions
- > Has led to piece-meal changes

•	Technology-specific auctions " <i>picking winners</i> "	•	 Network charging model created unexpected investment signals 	 Original ambitions tempered by industrial customers concerns
•	Lack of competition for some technologies		Rules changes every year	•

The reality: Tension between policy & markets As illustrated by the Capacity Mechanism

> Policy makers intervene by setting the objective:

"...deliver target level of capacity at lowest net cost..."

- > The market determines the type of investment that fulfils this objective
 - Small-scale embedded gas & diesel engines out-competing larger scale OCGTs & CCGTs
- > Shortfalls in policy-making process created a *policy expectation* that wasn't met by the market outcome
- > Policy-makers reaction: further intervention

"...buying more capacity, and buying it earlier..."

– However this prolongs risk of unintended consequences

So what technologies do we expect the current market & policy framework to deliver?

> Low carbon – next and future decades

- Steady growth of wind, especially offshore
- Slow replacement of existing nuclear capacity
- > Peaking Plant need is now
 - Needed for black start
 - New engines or OCGT

> Energy Storage – some need now but mostly next decade

- Strong growth expected when price low enough (mid 2020s)
- Some near-term deployment for balancing & embedded benefits

> Interconnectors – now and next decade?

>

- Growth driven by regulatory support
- Large deployment may reduce case for new CCGTs
- > CCGTs need for new is in next decade
 - Reducing CCGT energy requirement so expect reducing load factors
 - Aging plant may need re-investment or replacement by new in 2020s

> Contract for Difference

- Success could suppress energy prices, increasing future burden on Government
- Low carbon growth will limit exposure of GB prices to international commodity prices

> Capacity, Flexibility, Embedded Benefits

- Reliance on Embedded Benefits suppressing CM prices
- True value of flexibility obfuscated

Capacity, Flexibility, Embedded Benefits, Energy (arbitrage)

- Capacity value limited to ability to maintain delivery
- Competition with mobile storage?
- Diminishing returns on value of arbitrage

Cap & Floor, Energy (arbitrage), Capacity

- Value based on structural price differentials that could be eroded by greater harmonisation
- Diminishing returns on value of arbitrage
- Assumption that imports are zero carbon, 'green-washing'?

> Capacity, Energy, Flexibility

- Existing: Maintenance cycle vs capacity cycle?
- New: Uncertainty over future spread value
- Balancing Services framework uncertain

Do we need to worry about CCGTs?

- > Policy for energy delivery focusing on de-carbonisation
- > Security policy focusing on delivering peaking plant / short-term storage that is remunerated outside of the market
 - If framework creates wrong build signals, then risk of building too much of the wrong type of plant?
- Most projections (NGC, BEIS, others) see a continued need for significant CCGT capacity through to and beyond 2030
- > However large-scale gas plant face massive uncertainties over what energy delivery will be asked of them
 - Imports uncertain, nuclear roll-out uncertain, growth from heat & EVs uncertain
- > Unintended consequences of other policy interventions pose a risk to the economics of CCGTs, which if ignored could create security of supply problems

What's the 'so what'?

- > We need to encourage smarter grids, but to maximise benefits DSOs will have to learn how to communicate with the TSO more effectively
- > Rise of smaller, more modular, technologies is leading to growth of decentralised generation and lower usage of all networks
- > Centralised gas generation will remain fundamental both to balancing the electricity system and resolving the energy trilemma
- > To do so at least cost to the consumer, the commercial incentives that policy creates needs to be central to policy-making, rather than trying to doubleguess the 'right' outcome
- > Grid charging models need to change to create the right incentives to invest in the right generation assets in the right locations
- > We need to start considering how smart power grids and gas grids will interact in the future

Thank you for listening

POWERING. RELIABLE. FUTURE.

