

Superhard nanomaterials – where toughness really counts

Applications of NanoDiamond in Thermally Conductive / Electrically Nonconductive Polymers

Gavin Farmer – Carbodeon / Business Development

15th Anniversary HVM 2017 & 4th Graphene New Materials Conference 2-3 November 2017 Cambridge, UK www.cir-strategy.com/events

Carbodeon

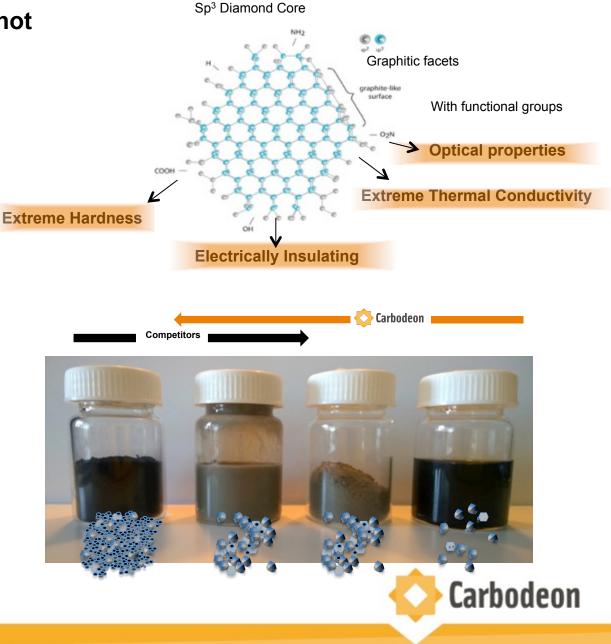
Carbodeon in Brief

- uDiamond[®] NanoDiamonds
 - >12 M€ investment in NanoDiamond production and application technologies
- Offering
 - For Engineering polymers
 - 20-200% improvement in thermal conductivity
 - Tailored glass transition temperature
 - Significant improvements in compound mechanical properties
 - For Wear and corrosion resistant metal coatings
 - >200% improvement in electroless nickel coating wear resistance, without impairing friction or corrosion properties
 - For Industrial polymer coatings
 - Fluoropolymer coatings with doubled wear resistance, improved corrosion resistance and tailored friction properties.
 - Transparent coatings with improved wear and corrosion resistance, without impairment of optical properties
- USP's
 - High performance with very low NanodDiamond loadings, easy to use and implement to current production processes, cost efficient
 - Industrially applied
- IP
 - Both product line and key applications are IP protected

- HQ in Finland, Helsinki Region
- Established 2006
- 10 employees
- Sales on 4 continents

Carbodeon in Brief

Artwork: Nancy Farmer / www.nancyfarmer.gallery


Superhard nanomaterials – where toughness really counts

Nanodiamond Material

Nanodiamonds - Snapshot

- Detonation produced 4-6 nm particles
- Base technology invented 1963 – not "getting there"
- Carbodeon disruptive technologies realizing the industrial potential
- Able to manufacture and utilize the primary particles
- "Less is More"

Application Dependent Surface Chemistry and Morphology

Powder grades	Surface	Zeta potential	Solid content**
Molto	Multi-functionalized	Slightly negative	100 wt.%
Vox P	Carboxylated	Highly negative	100 wt.%
Hydrogen P	Hydrogen terminated	Highly positive	100 wt.%
Amine P	Amine-fucntionalized	Highly positive	100 wt.%

Dispersion grades	Surface	Zeta potential	Solid content
Vox D, in water	Carboxylated	Highly negative	5 wt.%
Vox D, in NMP	Carboxylated	Highly negative	2 wt.%
Vox D, in DMA	Carboxylated	Highly negative	2 wt.%
Hydrogen D, in water	Hydrogen terminated	Highly positive	2.5 wt.%
Hydrogen D, in ethyl glycol	Hydrogen terminated	Highly positive	4 wt.%
Hydrogen D, in GBL	Hydrogen terminated	Highly positive	3 wt.%
Hydrogen D, in NMP	Hydrogen terminated	Highly positive	3 wt.%
Hydrogen D, in NEP	Hydrogen terminated	Highly positive	2 wt.%
Hydrogen D, in DMA	Hydrogen terminated	Highly positive	3 wt.%
Amine D, in water	Amine-functionalized	Highly positive	0.5 wt.%
Amine D, in NMP	Amine-functionalized	Highly positive	3.0 wt.%
Amine D, in ethyl glycol	Amine-functionalized	Highly positive	3.0 wt.%
Amine D, in GBL	Amine-functionalized	Highly positive	3.0 wt.%
Amine D, in DMA	Amine-functionalized	Highly positive	2.0 wt.%

Specialty Additive Grades	Surface	Zeta potential	Solid content
Plating Additive	Proprietary, in water	Highly positive	2 wt.%
Fluoropolymer coating additive	Proprietary, in GBL	Highly positive	0.5 wt.%

Intellectual Property

Carbodeon invested heavily in the IP protection of its developments over the entire supply chain

- The uDiamond® trademark is worldwide* registered
- The IPR are based upon a combination of 3 pillars: 1) Product 2) Production 3) Application

	Patent	Finland	РСТ	EPO	USA	Japan	Korea	China	Russia	India
	Blend Purification method			Р	Р	Р		Р		
Products & production	Carboxylated SDND	G		Ρ	P	P	P	Ρ	Ρ	
Produ produ	Hydrogenated SDND	G		Ρ	P	P	P	Р	Ρ	
	Amine SDND	G		P		Ρ		P		
	Thermoplastic ND containing thermal compounds	G		G	G	Р	P	Р		Р
Applications	Polymer ND containing thermal compounds	Р			Р	P				
	Mechanically enhanced Fluoro-polymer Coatings, 1 st application	G		Р	G	Р	P	Р		
	Metal coating, with SDND's	Р	Х		Р					
	Mechanically enhanced Fluoro-polymer Coatings, 2 nd application	P								

P = Pending / **P** = Pending (positive Official Action(Notice of Allowance

G = Granted

* Worldwide: Finland, EPO, USA, Norway, India, Canada, Russia, Japan, China, South Korea

Nanodiamond Additives Within Polymer Materials for Thermal Management

Nanodiamond – Advanced Thermal Additive for Polymers

	Diamond	H-BN	Al ₂ O ₃	SiO ₂	AIN	ZnO				
Thermal Properties										
Thermal conductivity, (W/m K)	2000	300+	30	1.4	260	54				
Theoretical Density, g/cm ³	3.1-3.2	3.9	3.98	2.2	3.26	5.64				
Electrical Properties	Electrical Properties									
Dielectric constant	3.4	3.9	9.7	3.8	8.8	9.8				
Electrical Resistivity, Ω•cm	10 ¹³	10 ¹⁵	10 ¹⁴	10 ¹⁴	10 ¹⁴	10 ⁷				
Surface properties, for coupling effect										
Chemical Functionalization	Yes	No	No	No	No	No				

- Optimized control of interaction between the filler, resin and other fillers (when present)
 - Reduced thermal resistance
 - High wettability
- Isotropic filler, with size fitting between the polymer chains

Nanodiamond Thermal Management Milestones

Silicone based thermal interface materials

 Nanodiamond+aluminium oxide filled silicone interface material in mass production for use in OEM consumer electronics devices since 2012. Carbodeon supplies nanodiamond and nanodiamond filler mixes mainly to formulators.

Thermally conductive thermoplastic materials

- In house developments on PA and PP since 2012 Nanodiamond + boron nitride, Nanodiamond + graphite filler combinations
- Production on the way validated since 2016 consumer electronics devices Carbodeon supplies nanodiamonds and nanodiamond filler mixes at various levels in the supply chain
- Patent granted on nanodiamond thermoplastic compounds **2015 WO 2014049212**

Epoxy materials

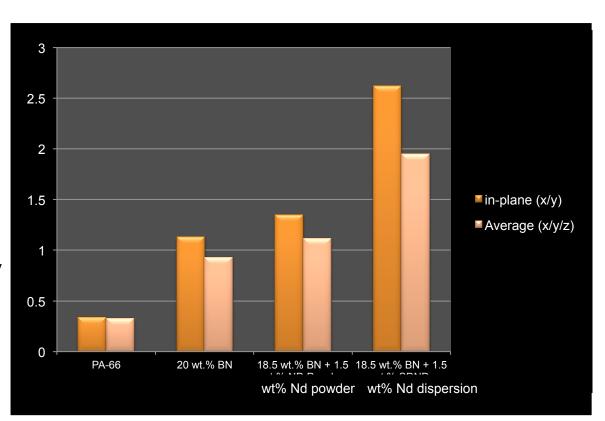
 Customer validations 2017 in both coatings and thermal management applications for electronics – Carbodeon supplies nanodiamonds and nanodiamond filler mixes at various levels in the supply chain.

Nanodiamond containing thermal compounds

Patent granted 2017, new invention encompassing both thermoplastic and thermoset materials
 US 9598558

Case Example: Nylon-66 Thermal Compounds

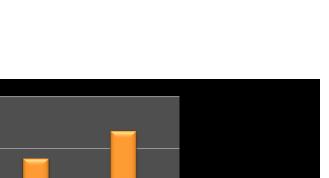
- Materials:
 - PA-66: Zytel 135F
 - Boron Nitride: ESK Boronid[®] thermal filler, 15 μm
 - Nanodiamond: Carbodeon mono-functionalized ND's
- Processing:
 - Compounding: Xplore15 micro-compounder
 - Injection molding: Thermo-Haake Minijet, 25*25*3 mm mold
- Thermal analyses:
 - Laser flash method (ISO 18755; LFA 447, Netzsch GmbH)

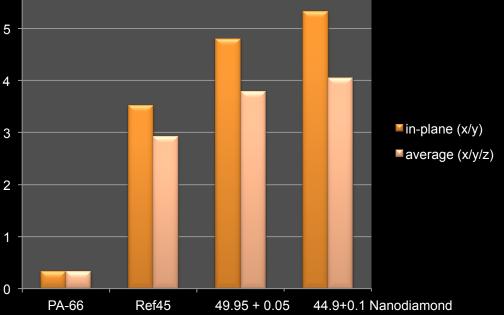


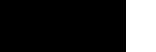
PA-66 Thermal Compound, 20 wt.% Overall Filler Loading

References:

- Neat PA-66
- Compound with 20 wt.% BN loading
- ND-containing compounds: 18.5 wt.% BN + 1.5 wt.% ND
- Performance (W/m · K)
 - Powder grade: > **22%** improvement in average thermal conductivity
 - Dispersion grade:
 - 132% improvement within in-plane thermal conductivity
 - 105% improvement within average thermal conductivity
- Highlights the importance of the preparation method

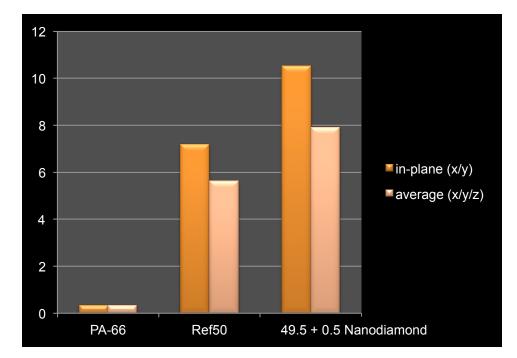

PA-66 Thermal Compound, 45 wt.% Overall Loading


6


References:

- neat PA-66
- compound with 45 wt.% BN loading
- Processing:
 - Carbodeon proprietary
- Performance (W/m · K):
 - 0.05 wt.%
 - 36.3% improvement within in-• plane thermal conductivity
 - 29.4% improvement within • average thermal conductivity
 - 0.1 wt.% ٠
 - 51.4% improvement within inplane thermal conductivity
 - 38.2% improvement within • average thermal conductivity
- Works at very low nanodiamond concentrations

Carbodeon


PA-66 Electrically Conducting Thermal Compound, 50 wt.% Overall Loading

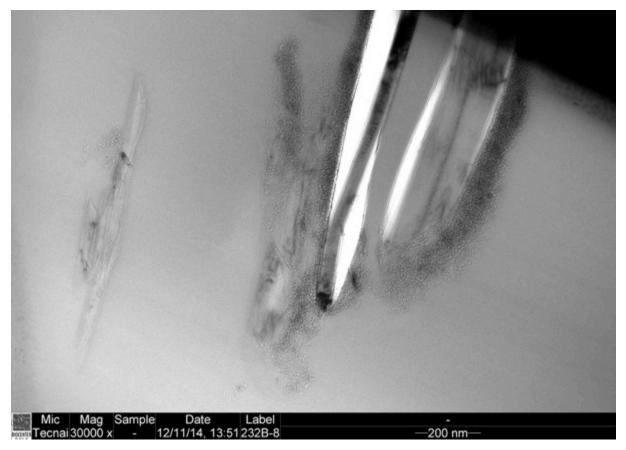
References:

- neat PA-66
- compound with 50 wt.% graphite loading
 - Graphite filler material, TIMCAL TIMREX® KS5-75TT Primary Synthetic Graphite
- Performance:
 - 0.5 wt.%
 - **46.3%** improvement within in-plane thermal conductivity
 - **40.7%** improvement within average thermal conductivity

Works with a wide variety of filler materials

PP Electrically Insulating Thermal Compound

- 45 wt.% overall filler loading
- References:
 - neat PP; Moplen RP340N
 - compound with 45 wt.% BN loading
 - ESK Boronid[®] thermal filler, 15 μm
- Performance:
 - 0.1 wt.%
 - **63%** improvement within in-plane thermal conductivity
 - **58%** improvement within average thermal conductivity
- Works with a wide variety of thermoplastic polymers

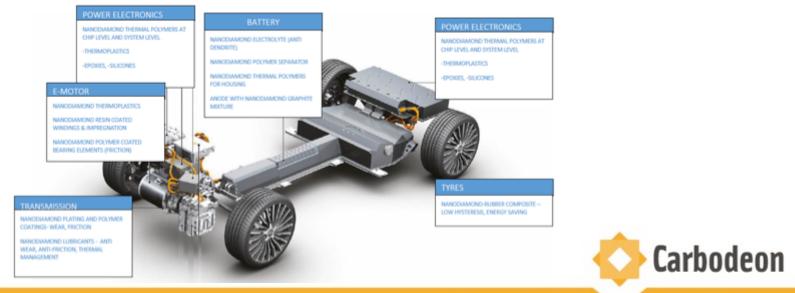


Verifying the Coupling Concept

FIB-STEM on a ready PA-66/BN/ND compound

Diamonds retain their adhesion to h-BN during compounding and injection molding

Ongoing Activities With NanoDiamond Combined Fillers


Carbodeon

- Thermoplastics
 - Main application area is in electronics and LED applications.
- Thermosets
 - Main application has been in thermal interface materials to date, but materials such as coatings of wires for electrical coils/ machinery could be a viable application.
- In house filler mixes
 - So far, about 90% of the developments involve nanodiamond supply only, with in-house filler mixing (in sample form) accounting for around 10%, but there is growing interest in this.
 - Ready preparations of nanodiamond and boron nitride, aluminium oxide or other materials will be easier to disperse into customer polymers.
- Supply Chain
 - Attacking mainly at component/ system level, formulators include both Carbodeon preferred partners and customer's existing suppliers

Industry Targets

- Consumer Electronics
- High Powered LED
- E-Mobility (New Focus)
 - Power electronics at device and assembly level vehicles and charging systems
 - Coatings and insulating pieces for electrical machine coils
 - Nanodiamond electrolytes to control dendrite growth in Lithium batteries
 - Low friction/ wear resistant materials and coatings in driveline

Nanodiamond USP within Polymer Thermal Management

- Technical performance
 - NanoDiamonds exhibit very high thermal conductivity and are electrically insulating
 - NanoDiamond surface functionalization allows efficient coupling to applied polymers and other thermal filler materials
 - Nanodiamond dispersions allow the improvements with very low nanodiamond concentrations
- Processing
 - Nanodiamonds can be applied within existing production processes & supply chains
- Cost
 - By using low concentrations, impact on material cost starts from approximately
 €1 per kg of the compounds. Most applications are in the range €2-10
- Commercial stage
 - NanoDiamonds are already applied in industrial solutions

Superhard nanomaterials - where toughness really counts

Contact: Carbodeon

Vesa Mayllymaki, CTO, CEO vesa.myllymaki@carbodeon.com +358 50 5678828

Gavin Farmer, Business Development gavin.farmer@carbodeon.com +44 7768 587105 +44 1953 850011

Linked inCarbodeon@fightingtorque

www.carbodeon.com