15th ANNIVERSARY **HVM** 4th **GRAPHENE NEW MATERIALS CONFERENCE SUMMIT & SHOWCASE** <u>www.cir-strategy.com/events</u>

2nd November 2017

Latest Top 5 Breakthroughs and Research in Energy Storage 2D Materials

Katarzyna Sokół, NanoDTC Chemistry Department University of Cambridge

Engineering and Physical Sciences Research Council

2D Materials for Energy Storage

Overcoming limitations of current batteries by using 2D materials

Schematic illustration of the electrochemical cycling process in a battery with 2D heterostructured pillared electrodes

1. <u>Graphene</u>, Graphene Oxide, Reduced Graphene Oxide

□ Fe₂O₃ -Graphene nanosheets

- Capacity of 400 mAh g⁻¹
- Retained stable over 200 cycles at a current density of 100 mA g⁻¹
- Even at high current density of 1000 mA g⁻¹, capacity reaching 190 mAh g⁻¹
- □ Low-cost anode of SIBs
- Superior cycling and rate performance

Nickel Cobalt Hydroxide @ Reduced Graphene Oxide Hybrid

- Application: High Performance Asymmetric Supercapacitor
- Remarkable cycling stability (80% retention after 17,000 cycles)
- High energy density 56.1 Wh kg⁻¹

2. ACS Appl. Mater. Interfaces 2016, 8, 1992–2000

Adv. Mater. **2016**, 28, 6104–6135

. Nat. Rev. Mater., 2016, 1, 1-14 . Adv. Energy Mater. **2016**, 6, 1600025

[.] J. Materiomics, 2016, 2, 37-54

2. <u>TMOs</u>: Transition Metal Oxides

Na_{0.4}Mn_{0.54}Co_{0.46}O₂ nanosheets cathode

- □ Superior cycling performance
- High reversible capacity of 151 mAh g⁻¹ at current density of 20 mA g⁻¹
- After 65 cycles, still delivered reversible capacity of 120 mAh g⁻¹
- Promising rechargeable SIBs

Ultrathin NiO nanosheets

- Sodium storage: high reversible specific capacity of 299 mAh g⁻¹ at 1 A g⁻¹
- \Box Retained 154 mAh g⁻¹ at 10 A g⁻¹
- Upon cycling, the specific capacity remained as high as 266 mAh g⁻¹ after 100 cycle at 1A g⁻¹
- □ Attractive for high-rate SIBs

3. <u>TMDs</u>: Transition Metal Dichalcogenides

□ rGO/MoS₂ electrodes

- Good cycling performance
- Stable charge capacity of 240 mAh g⁻¹ at current density 25 mA g⁻¹
- □ Coulombic efficiency ≈99%
- Retaining 90% and 72% of this capacity at high current density (100 mA g⁻¹ and 200 mA g⁻¹)

SnS₂-rGO hybrid

- High capacity, long cycle life, excellent rate capability
- □ High charge capacity (649 mAh g⁻¹ at current density 100 mA g⁻¹)
 □ Current density up to 12.8 A g⁻¹ (≈28 C) while still delivering charge capacity of 337 mAh g⁻¹

4. <u>MXenes</u>: 2D Transition Metal Carbides, Carbonitrides and Nitrides

400

200

-200

-400

□ Free-standing Mo₂CT_x

- Promising anode material for high power batteries and Li-ion capacitors
- □ High capacitance (700 F cm⁻³ in 1 M H₂SO₄)
- ☐ High capacity retention (10,000 cycles at 10 A g⁻¹)
- □ Free-standing films (8 wt% CNTs)
- Stable reversible capacity of 250 mAh g⁻¹ (20 C rate) achieved for over 1,000 cycles

Anasori, B., Lukatskaya, M.R., Gogotsi, Y., *Nat. Rev, Mater.*, **2017**, 16098, 2-17

2. Cao, X. et al, Adv. Mater. 2016, 28, 6167–6196

 $n = 3 Nb_4C_3$

5. <u>Polymers</u>: Crystalline 2D Conjugated Aromatic Polymers

- Novel 2D graphene-like polymer sheets via C-C coupling
- Application: electrode (anode) in sodium ion batteries
- Superior stability
- Quick charging and discharging at room temperature
- Worked well when tested in LIBs

Sodium storage performance of 2D-CAP electrode in the potential range 0.005–2.5 V (vs. Na/Na⁺)

Retained 70% capacity after 7,700 charge cycles