New Materials & Graphene - The key breakthroughs and applications

15th Anniversary HVM 2017 & 4th Graphene New Materials Conference 2-3 November 2017 Cambridge, UK

www.cir-strategy.com/events

Professor Krzysztof Koziol

k.koziol@cranfield.ac.uk

www.cranfield.ac.uk

D

Graphene 2 D

ISO/TS 80004-13:2017(en)

<u>Graphene</u>

- Very flexible
- Anti flammable
- Ultra light weight
- Corrosion resistant
- High electron mobility (200,000 cm²/Vs)
- Absence of skin effect
- Very high surface area (2600 m²/g)
- Multifunctional abilities
- Very low electrical resistance
- Extremely high tensile strength
- Very high thermal conductivity (5000 W/mK)
- Shows significant reduction of electromigration
- Resistance has small dependence on temperature
- Can be produced using sustainable methods and raw materials

Power distribution & generation

Telecommunications

Automotive Industry

Microelectronics

Marine Industry

Aerospace

Graphene retains the promise of transforming human civilisation more than any other material this century...

<u>Graphene</u>

• Very flexible

- Anti flammable
- Ultra light weight
- Corrosion resistant
- High electron mobility (200,000 cm²/Vs)
- Absence of skin effect
- Very high surface area (2600 m²/g)
- Multifunctional abilities
- Very low electrical resistance
- Extremely high tensile strength
- Very high thermal conductivity (5000 W/mK)
- Shows significant reduction of electromigration
- Resistance has small dependence on temperature
- Can be produced using sustainable methods and raw materials

... with enormous capabilities in the continuous fabrication of electrical conductors, electrical networks, electronic circuits and electrical machines.

Power distribution & generation

Telecommunications

Automotive Industry

Microelectronics

Marine Industry

Aerospace

ISO/TS 80004-13:2017(en)

MONOLAYER SINGLE LAYER

BILAYER, TRILAYER 2, 3 LAYERS

UPTO 10 LAYERS MULTILAYER

NANORIBBONS

GRAPHENE OXIDE

Graphene Nanoribbons

Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches Lingxiu Chen, Nature Communications, 8, 14703 (2017)

and other 2D materials

Two-dimensional material nanophotonics Fengnian Xia et al, Nature Photonics, 8, 899 (2014)

Cranfield University

and other 2D materials

Liu Group, Nanyang Technological University, Singapore

Graphene development support

Over 10 years (from 2013), the GrapheneUK government commitment £120 MFlagship programme will receive €1 billion

Graphene, the material with many extraordinary properties, has swallowed around £120m in UK government funds, but development and commercialisation is proving tortuously slow and increasingly dogged with disappointment.

So concerned are MPs with the lack of progress that late last year they conducted a series of hearings via the House of Commons Science and Technology Committee... 14 Feb 2017

First graphene made by...

"Scotch tape method"

The University of Manchester

"Top down" mechanical exfoliation

Prof. Konstantin Novoselov & Prof. Andre Geim

Production of Graphene

Production of Graphene

"Bottom up"

Graphene Challenges

- Contamination
 - Reproducibility
 - Consistency

High Quality

- Quality Control
 - Traceability

Giving performance

Supporting Graphene Commercialisation

Graphene standardisation:

developing and testing in-line graphene flake testing instrumentation

Limitless Applications...

Are we choosing the correct material?

Power Transmission:

Cu/CNT wires

pure CNT wires

Enhanced Composites and Structures Centre Cranfield University

Electrical machines

Cranfield University

> **Electrical transport in carbon nanotube fibres** Lekawa-Raus et al, Scripta Materialia, 131, 112 (2017)

PV system/Smart windows

Flexible, transparent solar cell, using low-cost organic materials and graphene

efficiencies of 2.8 to 4.1%

I'lii

Pressure sensor and temperature sensor with graphene layer for textronic applications

NAROAN AMINING

Textronic temperature sensors

Małgorzata Jakubowska Warsaw University of Technology

Pulse and EEG sensor based on graphene

Małgorzata Jakubowska Warsaw University of Technology

Graphene based polymer composites

Graphene reinforced concrete

26% in flexural strength and 14% in compressive strength

Graphene applications in automotive industry

Lubricants, coolants, enhanced fuel Improved rubber seals

Graphene heaters: aerospace use

Area Heating: TWI

Innovate UK

Contact the facility

Cranted Internity	•	These Control
Disated Unersty	0	Contrast School of Management

Area Heating: Freestanding heater

CamGraph[®] enabled

Advantages over existing heater mats:

- Lightweight
- Thin
- Flexible
- Uniform heating
- Durable

12V graphene heater module example*

Power density	2.5 kW/m ²	
Voltage	12V	
Max temp	250°C	

*12V – 240V modules available

Coatings

Fire-retardant graphene coatings 🖉 🔅

150 bn cubic meters of natural gas flared every year

THANK YOU

Professor Krzysztof Koziol Cranfield University School of Aerospace, Transport and Manufacturing Building 61, Cranfield, Bedfordshire, MK43 OAL, UK

k.koziol@cranfield.ac.uk

http://www.cametics.com/

Cambridge Nanosystems

FG\

http://www.energy-fluids.com/

International Society of Nanoscience